A blog for enthusiastic math-lovers!

Tower of Hanoi

The Tower of Hanoi is a popular puzzle invented by E. Lucas in 1883. The idea is that there are n disks arranged from largest to smallest on one rod together with two empty rods. What is the smallest number of moves that must be made in order to transfer the disks completely from one rod to an adjacent one if:
1) Only one disk may be moved at a time.
2) A large disk may not rest on top of a smaller one.

Hint: Use induction. First, try n = 2, then n = 3, etc and determine the pattern.

Challenge: What is the most efficient algorithm for moving these disks?


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

Tag Cloud

%d bloggers like this: